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Taming the tail through data depth
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Due to recent advances in high-dimensional statistics,
there is a renewed interest in developing tools to better
understand the geometric structure of datasets. Numer-
ous multivariate statistical depth functions have been pro-
posed to establish ranks and identify outliers in multivari-
ate data. Most of the depth functions use a geometric
approach, employing halfspaces, paraboloids, and pro-
jections to measure centrality from a global perspective.
This results in an ordering of observations from the center
outward.

The geometric tools used in the analysis of data depth
offer nonparametric descriptions of a data set in a multidi-
mensional space, making them quite useful for statistical
inference problems (e.g. [7]), among which classifica-
tion and regression (see e.g. [2, 3]), for learning theory
(see e.g. [5]), outliers or anomaly detection (e.g. [8]) and
multivariate risk analysis.

Our motivation lies in exploring asymptotics, specifi-
cally the examination of the behavior of depth-based mul-
tivariate quantiles as they approach extreme regions, both
in terms of population measures and empirical data. Fur-
thermore, our objective is to comprehend the connection
between the extreme behavior of a probability measure
(whether it exhibits a light or heavy tail) and the corre-
sponding depth measures associated with it.

We focus on two prominent measures of data depth:
halfspace depth, as described by [10], and spatial depth,
introduced by [1]. The selection of these specific geo-
metric measures stems from the core objective of our re-
search. The fundamental question of characterising the
tail behaviour of a probability measure using these geo-
metric measures inherently addresses whether they cap-
ture essential aspects of the underlying probability distri-
bution. In fact, it was demonstrated by [4] that geomet-
ric quantiles uniquely identify the underlying probabil-
ity measure. However, the same does not hold true for
halfspace depth, as shown by [6]. On the other hand,
[9] established that halfspace depth uniquely identifies
measures with finite support (e.g., empirical measures).
This uniqueness property (under constraint for halfspace
depths) indicates a direct correspondence between these
two geometric measures of our interest and the underly-
ing probability measures. It is therefore natural to look
for clearer connection between the extremal behaviours
of these geometric measures and their underlying proba-
bility measures. This motivates our study.

Considering practical applications, the questions re-
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garding asymptotics become even more critical when ex-
amining sample versions of these two geometric mea-
sures. This forms the essence of the paper: We establish
convergence rates for the sample versions and investigate
the extreme behavior of the geometric measures based on
the nature of the underlying distribution
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